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Abstract

The problem of extracting the relevant aspects of data, in face of multiple
conflicting structures, is inherent to modeling of complex data. Extract-
ing structure in one random variable that is relevant for another variable
has been principally addressed recently via theinformation bottleneck
method[14]. However, such auxiliary variables often contain more in-
formation than is actually required due to structures that are irrelevant for
the task. In many other cases it is in fact easier to specify what is irrele-
vant than what is, for the task at hand. Identifying the relevant structures,
however, can thus be considerably improved by also minimizing the in-
formation about another, irrelevant, variable. In this paper we give a
general formulation of this problem and derive its formal, as well as al-
gorithmic, solution. Its operation is demonstrated in a synthetic example
and in the context of text categorization. While the original information
bottleneck problem is related to rate distortion theory, with the distortion
measure replaced by the relevant information, extracting discriminative
relevant features is formally related to rate distortion with side informa-
tion.

1 Introduction
A fundamental goal of machine learning is to find regular structures in a given empirical
data, and use it to construct predictive or comprehensible models. This general goal, unfor-
tunately, is very ill defined, as many data sets contain alternative, often conflicting, under-
lying structures. For example, documents may be classified either by subject or by writing
style; spoken words can be labeled by their meaning or by the identity of the speaker; pro-
teins can be classified by their structure or function - all are valid alternatives. Which of
these alternative structures is “relevant” is often implicit in the problem formulation.

The problem of identifying “the” relevant structures is commonly addressed in supervised
learning tasks, by providing a “relevant” label to the data, and selecting features that are dis-
criminative with respect to this label. An information theoretic generalization of this super-
vised approach has been proposed in [8, 14] through the “information bottleneck method”
(IB). In this approach, relevance is introduced through another random variable (as is the
label in supervised learning) and the goal is to compress one (the source) variable, while
maintaining as much information about the auxiliary (relevance) variable. This framework



has proven powerful for numerous applications, such as clustering the objects of sentences
with respect to the verbs [8], documents with respect to their terms [1, 5, 13], genes with
respect to tissues [7, 10], and stimuli with respect to spike patterns [9].

An important condition for this approach to work is that the auxiliary variable indeed cor-
responds to the task. In many situations, however, such “pure” variable is not available.
The variable may in fact contain alternative and even conflicting structures. In this paper
we show that this general and common problem can be alleviated by providing “negative
information”, i.e. information about “unimportant”, or irrelevant, aspects of the data that
can interfere with the desired structure during the learning.

As an illustration, consider a simple nonlinear regression problem. Two variablesx andy
are related through a functional formy = f(x) + ξ, wheref(x) is in some known function
class andξ is noise with some distribution thatdepends onx. When given a sample of
(x, y) pairs with the goal of extracting the relevant dependencey = f(x), the noiseξ -
which may contain information onx and thus interfere with extractingy - is an irrelevant
variable. Knowing the joint distribution of(x, ξ) can of course improve the regression
result.

A more “real life” example can be found in the analysis of gene expression data. Such
data, as generated by the DNA-chips technology, can be considered as an empirical joint
distribution of gene expression levels and different tissues, where the tissues are taken from
different biological conditions and pathologies. The search for expressed genes that testify
for the existence of a pathology may be obscured by genetic correlations that exist also in
other conditions. Here again a sample of irrelevant expression data, taken for instance from
a healthy population, can enable clustering analysis to focus on the pathological features
only, and ignore spurious structures.

These two examples, and numerous others, are all instantiations of a common problem: in
order to better extract the relevant structures information about the irrelevant components
of the data should be incorporated. Naturally, various solutions have been suggested to this
basic problem in many different contexts (e.g. spectral subtraction, weighted regression
analysis). The current paper presents a general unified information theoretic framework for
such problems, extending the original information bottleneck variational problem to deal
with discriminative tasks of that nature, by observing its analogy with rate distortion theory
with side information.

2 Information Theoretic Formulation

To formalize the problem of extracting relevant structures consider first three categorical
variablesX, Y + andY − whose co-occurrence distributions are known. Our goal is to un-
cover structures inP (X,Y +), that do not exist inP (X,Y −). The distributionP (X;Y +)
may contain several conflicting underlying structures, some of which may also exist in
P (X,Y −). These variables stand for example for a set of termsX, a set of documents
Y + whose structure we seek, and an additional set of documentsY −, or a set of genes
and two sets of tissues with different biological conditions. In all these examplesY + and
Y − areconditionally independentgivenX. We thus make the assumption that the joint
distribution factorizes as:p(x, y+, y−) = p(x)p(y+|x)p(y−|x).

The relationship between the variables can be expressed by a Venn diagram (Figure 1A),
where the area of each circle corresponds to the entropy of a variable (see e.g. [2] p.20
and [3] p.50 for discussion of this type of diagrams) and the intersection of two circles
corresponds to their mutual information. The mutual information of two random variables
is the familiar symmetric functional of their joint distribution,

I(X;Y ) =
∑
x,y

p(x, y) log
(
p(x, y)
p(x)p(y)

)
. (1)



A. B.

./Figures/ven_clr_short_d.eps ./Figures/dca_diagram5.eps

Figure 1:A. A Venn diagram illustrating the relations between the entropy and mutual in-
formation of the variablesX,Y +,Y −. The area of each circle corresponds to the entropy of
a variable, while the intersection of two circles corresponds to their mutual information. As
Y + andY − are independent givenX, their mutual information vanishes whenx is known,
thus all their overlap is included in the circle ofX. B. A graphical model representation
of discriminative IB. Given the three variablesX,Y +,Y −, we seek a compact stochastic
representation̂X of X which preserves information aboutY + but removes information
aboutY −. In this graphY + andY − are indeed conditionally independent givenX.

To identify the relevant structures in the joint distributionp(x, y+), we aim to extract a
compact representation of the variableX with minimal loss of mutual information about
the relevant variableY +, andat the same timewith maximal loss of information about the
irrelevance variableY −. The goal ofdiscriminative information bottleneck(DIB) is there-
for to find a stochastic map ofX to a new variableX̂, p(x̂|x), in a way that maximizes its
mutual information withY + and minimizes the mutual information aboutY −. In general
one can achieve this goal perfectly only asymptotically and the finite case leads to a sub
optimal compression, an example of which is depicted in the blue region in figure 1. These
constrains can be cast into a single variational functional,

L = I(X; X̂)− β
[
I(X̂;Y +)− γI(X̂;Y −)

]
(2)

where the Lagrange parameterβ determines the tradeoff between compression and infor-
mation extraction while the parameterγ determines the tradeoff between preservation of
information about the relevantY + variable and loss of information about the irrelevant one
Y −. In some applications, such as in communication, the value ofγ may be determined by
the relative cost of transmitting the information aboutY − by other means.

The information bottleneckvariational problem, introduced in [14], is a special case of
our current variational problem withγ = 0, namely, no side or irrelevant information is
available. In that case only the distributionsp(x̂|x), p(x̂) andp(y+|x̂) are determined.

3 Solution Characterization

The complete Lagrangian of this constrained optimization problem is given by

L[p(x̂|x)] = I(X; X̂)− β
[
I(X̂;Y +)− γI(X̂;Y −)

]
−
∑
x

λ(x)
∑
x̂

p(x̂|x) (3)

whereλ(x), are the normalization Lagrange multipliers. Here, the minimization is per-
formed with respect to the stochastic mappingp(x̂|x), taking into account its probabilistic
relations top(z), p(y+|z) andp(y−)1.

1Interestingly, performing the minimization overp(x̂|x); p(x̂); p(y+|x̂); p(y−|x̂) as independent
variables leads to the same solution of self-consistent equations.



Proposition 1 The extrema ofL obey the following self consistent equations

p(x̂|x) =
p(x̂)
Z

e(−β(DKL[p(y+|x)||p(y+|x̂)]−γDKL[p(y−|x)||p(y−|x̂)])) (4)

p(x̂) =
∑
x

p(x̂|x)p(x)

p(y+|x̂) =
1

p(x̂)

∑
x

p(y+|x)p(x̂|x)p(x)

p(y−|x̂) =
1

p(x̂)

∑
x

p(y−|x)p(x̂|x)p(x)

whereZ = p(x̂)
∑
x̂ exp {−β (DKL [p(y+|x)||p(y+|x̂)]− γDKL [p(y−|x)||p(y−|x̂)])}

is a normalization factor andDKL [p||q] =
∑
x p(x) log p(x)

q(x) is the Kullback-Leibler di-
vergence [2],

Proof:
Following the Markovian relationp(y|x, x̂) = p(y|x), we write p(y, x̂) =∑
x p(y, x̂|x)p(x) =

∑
x p(y|x̂, x)p(x̂|x)p(x) =

∑
x p(y|x)p(x̂|x)p(x) and obtain for the

second term of Eq. 3

δ

δp(x̂|x)
I(X̂;Y +) =

δ

δp(x̂|x)

∑
x̂

∑
y+

∑
x

p(y+|x)p(x̂|x)p(x) log
(
p(y+|x̂)
p(y+)

)
(5)

= p(x)
∑
y+

p(y+|x) log
(
p(y+|x̂)
p(y+|x)

p(y+|x)
p(y+)

)
= −p(x)DKL

[
p(y+|x)||p(y+|x̂)

]
+ p(x)DKL

[
p(y+|x)||p(y+)

]
similar differentiation for the other terms yield

δ

δp(x̂|x)
L = p(x) log

(
p(x̂|x)
p(x̂)

)
(6)

−p(x)β
(
DKL

[
p(y+|x)||p(y+|x̂)

]
+ γDKL

[
p(y−|x)||p(y−|x̂)

])
+p(x)λ(x, y+, y−)

whereλ(x, y+, y−) = λ(x)
p(x) + β (DKL [p(y+|x)||p(y+)]− γDKL [p(y−|x)||p(y−)]),

holds all terms independent ofx̂. Equating the derivative to zero then yields the first equa-
tion of proposition 1.

The formal solutions of the above variational problem have an exponential form which is a
natural generalization of the solution of the original IB problem. As in the original IB, when
β goes to infinity the Lagrangian reduces toI(X;Y +) − γI(X;Y −), and the exponents
collapse to a hard clustering solution, wherep(x̂|x) become binary cluster membership
probabilities.

Further intuition about the operation of DIB can be obtained by rewriting the second

term in Eq. 3, I(X;Y +) − γI(X;Y −) =
∑
x̂

∑
y+

∑
y−p(x̂, y

+, y−) log
(
p(y+|x̂)
p(y+)

)
−

γ
∑
x̂

∑
y+

∑
y− p(x̂, y

+, y−) log
(
p(y−|x̂)
p(y−)

)
=
〈

log
(
p(y+|x̂)
p(y−|x̂)γ

p(y−)γ

p(y+)

)〉
p(x̂,y+,y−)

. For

γ = 1 and a fixed level ofI(X; X̂), DIB thus operates to extract a compact representation



X̂ that maximizes the mean log likelihood ratio
〈

log
(
p(y+|x̂)
p(y−|x̂)

)〉
p(x̂,y+,y−)

, measuring the

discriminability between the distribution ofp(y+|x̂) andp(y−|x̂).

The above setup can be extended to the case of multiple variables on which multi-
information should be preserved{y+

1 , ..., y
+
N+} and variables on which multi-information

should be removed{y−1 , ..., y
−
N−}, as discussed in [7]. This yields

p(x̂|x)
p(x̂)

∝ e(−
∑

i
γ+
i
DKL[p(y+

i
|x)||p(y+

i
|x̂)]+

∑
i
γ−
i
DKL[p(y−i |x)||p(y−

i
|x̂)]) (7)

which can be solved together with the other self-consistent conditions, similarly to Eq. 5.

4 Relation to Rate Distortion Theory with Side Information

The discriminative problem formulated above is related to the theory of rate distortion with
side information ([2], p. 439). In rate distortion theory (RDT) a source variableX is
stochastically encoded into a variablêX, which is decoded at the other side of the channel
with some distortion. The achievable code rate,R at a given distortion levelD, is bounded
by the optimal rate, also known as therate distortion function,R(D). The optimal encoding
is determined by the stochastic mapp(x̂|x), where the representation quantization is found
by minimizing the average distortion. For the optimal codeI(X; X̂) = R(D).

This rate can be improved by utilizing side information in the form of another variable,W ,
that is known at both ends of the channel. In this case, an improved rate can be achieved
by avoiding sending information aboutX that can be extracted fromW . Indeed, in this
case the rate distortion function with this side information has a lower lower-bound, given
byR(D) = I(X; X̂) − I(X;W ), whereX̂ is the optimal quantization ofX in this case,
under the distortion constraint (see [2] Ch. 14 for details). In the information bottleneck
framework the average distortion is replaced by the mutual information about the relevant
variable, while the rate-distortion function is turned into a convex curve that characterizes
the complexity of the relation between the variables, (see [14, 12]).

Similarly, DIB avoids differentiating instances ofX that are informative aboutY + if they
contain information also aboutY −. The variableY − is analogous to the side information
variableW , while Y + is just the “informative”Y of the original IB. While the formal
analogy between these problems helps in their mathematical formulation, it is important to
emphasize that these are very different problems both in motivation and scope. Whereas
RDT with side information is a specific communication problem with some given (often
arbitrary) distortion function, our problem is a general statistical non-parametric analysis
technique that depends solely by the choice of the variablesX, Y + andY −. Many differ-
ent pattern recognition and discriminative learning problems can be cast into this general
information theoretic framework - far beyond the original setting of RDT with side infor-
mation.

5 Algorithms

The set of self-consistent equations, equation. 5, can be solved by iterating the equations,
given initial distributions, as in the algorithm presented for the IB [14, 7], with similar
convergence proofs. As in the case of IB, various heuristics can be applied, such as deter-
ministic annealing - in which increasing the parameterβ is used to obtain finer clusters;
greedy agglomerative hard clustering [12]; or a sequential K-means like algorithm (sIB)
[11]. The latter provides a good compromise between top-down annealing and agglom-
erative greedy approaches and achieves excellent performance. This is the algorithm we
adopted for the DIB in this paper.



6 Applications

We describe two applications of our method: First to a simple synthetic example, and
secondly to a “real world” problem of hierarchical text categorization

A. B. C. D.
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Figure 2: Demonstration of DIB operation.A. A joint distributionP (X,Y +) that con-
tains two distinct and conflicting structure.B. ClusteringX into two clusters using the
information bottleneck method separates upper and lower values ofX, according to the
stronger structure.C. A joint distributionP (X,Y −) that contains a single structure, sim-
ilar in nature to the stronger structureP (X,Y +). D. ClusteringX into two clusters using
DIB successfully extract the weaker structure inP (X,Y +).

6.1 A synthetic example

To demonstrate the ability of our approach to uncover weak but interesting hidden struc-
tures in data, we designed a co-occurrences matrix contains two competing sub-structures
(see figure 2A). For demonstration purposes, the matrix was created such that the stronger
structure can be observed on the left and the weaker structure on the right. CompressingX
into two clusters while preserving information onY + using IB (γ = 0), yields to clustering
of figure 2C, in which the first half ofx’s are all clustered together. This clustering follows
from the strong structure on the left of 2A.

We now created a second co-occurrence matrix, to be used for identifying the relevant
structure, in which each half ofX yield similar distributionsP (y−|x), . Applying our dis-
criminative clustering algorithm now successfully ignores the strong but irrelevant structure
in P (Y +,X) and retrieves the weak structure. Importantly, this is done in an unsupervised
manner, without explicitly pointing to the strong but irrelevant structure.

This example was designed for demonstration purposes, thus the irrelevant structures is
strongly manifested inP (X;Y −). The next example shows that our approach is also useful
for real data, in which structures are much more covert.

6.2 Hierarchical text categorization

Text categorization is a fundamental task in information retrieval. Typically, one has to
group a large set of texts into groups of homogeneous subjects. Recently, Slonim and
colleagues showed that the IB method achieves categorization that predicts manually pre-
defined categories with great accuracy, and largely outperforms competing methods [11].
Clearly, this unsupervised task becomes more difficult when the texts have similar subjects,
because alternative categories are extracted instead of the “correct” one.
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Figure 3: A. An illustration of the 20 newsgroups hierarchical data we used.B. Catego-
rization accuracy vs. no of word clustersk. N = 100.

This problem can be alleviated by using side information in the form of additional docu-
ments from other categories. This is specifically useful in hierarchical document catego-
rization, in which known categories are refined by grouping documents into sub-categories.
[4, 15]. Discriminative clustering can be applied to this problem by operating on the terms-
documents co-occurrence matrix and clustering a group of documents into its subgroups,
while using the other top-level groups for focusing on the relevant structures.

While DIB is targeted at learning structures in unsupervised manner, we have chosen to ap-
ply it to a labelled dataset of documents, in order to be able to measure how its results
agree with manual classification. Labels are not used by our algorithms during learn-
ing and serve only to quantify the performance. We therefore used the20 Newsgroups
databasecollected by [6] preprocessed as described in [11]. This database consists of 20
equal sized groups of documents, hierarchically organized into groups according to their
content. We aimed to cluster documents that belong to two newsgroups from the super-
group of computer documents and have very similar subjectscomp.sys.ibm.pc.hardware
andcomp.sys.mac.hardware. As side information we used all documents from the super
group of science (sci.crypt, sci.electronics, sci.med, sci.space).

To demonstrate the power of DIB we used double clustering to separate documents into
two groups. First, the most frequent 2000 words in these documents were clustered into
N clusters using to discriminative clustering. Then, word clusters were sorted by a single-
cluster discriminative scoreDKL[p(y+|x̂)||p(y+)] − γDKL[p(y−|x̂)||p(y−)], and thek
clusters with the highest score are chosen. These word-clusters were then used for cluster-
ing documents. The performance of this process is evaluated by measuring the overlap of
the resulting clusters with the original groups. Figure 3, plots document-clustering accu-
racy forN = 100, as a function ofk. DIB (γ = 1) is compared with the IB method (i.e.
γ = 0). Using DIB successfully improves mean clustering accuracy from about 55 percent
to about 63 percents.

7 Conclusions

We have presented an information theoretic approach for extracting relevant structures from
data, that may contain multiple conflicting structures. Our approach stems from the theory
of rate distortion with side information and the information bottleneck method, and uses
side data to unlearn the irrelevant structures.
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