
Appendix A

Information Theory

A.1 Entropy

Shannon (Shanon, 1948) developed the concept of entropy to measure the

uncertainty of a discrete random variable. Suppose X is a discrete random

variable that obtains values from a finite set x1, ..., xn, with probabilities

p1, ..., pn. We look for a measure of how much choice is involved in the

selection of the event or how certain we are of the outcome. Shannon argued

that such a measure H(p1, ..., pn) should obey the following properties

1. H should be continuous in pi.

2. If all pi are equal then H should be monotonically increasing in n.

3. If a choice is broken down into two successive choices, the original H

should be the weighted sum of the individual values of H.

Shannon showed that the only H that satisfies these three assumptions is of

the form

H = −k

n∑

i=1

pi log pi (A.1)

and termed it the entropy of X, since it coincides with the notion of entropy

defined in certain formulations of statistical mechanics. k is a constant that

determines the units of measure, and can be absorbed in the base of the log.

The current thesis adheres to the computer science literature and uses the

log in base 2. To summarize, we define entropy as
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Definition A.1.1 : Entropy

The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑

x

p(x) log p(x) (A.2)

We will also sometimes use the notation H[p] to denote the entropy of a

random variable that has a probability distribution p. Given several random

variables we then define

Definition A.1.2 : Joint Entropy

The joint entropy H(X, Y ) of a pair of discrete random variables X and Y

with a joint distribution p(x, y) is defined by

H(X, Y ) = −
∑

x

∑

y

p(x, y) log p(x, y) (A.3)

Definition A.1.3 : Conditional entropy

Let X and Y be discrete random variables with joint distribution p(x, y)

and conditional distributions p(x|y), then the entropy conditioned on a single

symbol is defined by

H(X|Y = y) = −
∑

x

p(x|y) log p(x|y) . (A.4)

The conditional entropy is defined by

H(X|Y ) =
∑

y

p(y)H(X|Y = y) (A.5)

= −
∑

y

p(y)
∑

x

p(x|y) log p(x|y)

= −
∑

x,y

p(x, y) log p(x|y) .

Several properties of the entropy worth mentioning.

Theorem A.1.4 : Properties of H(X)

The entropies H(X) of a discrete random variable X that can obtain the

values x1, ..., xn, and the joint entropy H(X, Y ), obey the following proper-

ties

1. Non-negativity H(X) ≥ 0
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2. Upper bound H(X) ≤ log(n)

3. Chain rule: H(X, Y ) = H(X) + H(Y |X)

4. Conditioning reduces entropy H(X|Y ) ≤ H(X)

5. H(p) is concave in p

A.2 Relative entropy and Mutual information

The entropy of a variable is a measure of the uncertainty in its distribution.

The relative entropy is a measure of the statistical distance between two

distributions

Definition A.2.1 : Relative Entropy

The relative entropy or the Kullback Leibler divergence between to proba-

bility functions p(x) and q(x), is defined by

DKL[p||q] =
∑

x

p(x) log
p(x)

q(x)
(A.6)

The KL divergence appears in statistics as the expected value of the log

likelihood ratio. It therefore determines the ability to discriminate between

two states of the world, yielding sample distributions p(x) and q(x).

We also use sometimes a variant of DKL

Definition A.2.2 : Jensen-Shannon divergence

The Jensen-Shannon divergence between to probability functions p1(x) and

p2(x), is defined by

JSπ[p||q] = π1DKL[p1||p] + π2DKL[p2||p] (A.7)

with {π1, π2} being prior probabilities πi > 0,
∑

i πi = 1, and p is the

weighted average p = π1p1 + π2p2.

Theorem A.2.3 : Properties of DKL

Let p(x) and q(x) be two probability distributions, Then

1. DKL[p||q] ≥ 0 with equality iff p(x) = q(x)∀x.
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2. DKL[p||q] is convex w.r.t the pair (p, q).

Definition A.2.4 : Mutual Information

The mutual information I(X; Y ) of two random variables X and Y is the

KL divergence between their joint distribution and the product of their

marginals

I(X; Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (A.8)

By this definition the mutual information provides some measure of the

dependence between the variables. From the non negativity of the DKL we

obtain

Theorem A.2.5 : Non negativity of I(X;Y)

Let X and Y be two discrete random variables, then

I(X; Y ) ≥ 0 (A.9)

and equality iff X and Y are independent.

Theorem A.2.6 : Properties of the mutual information

Let X and Y be two discrete random variables, then their mutual informa-

tion I(X; Y ) obeys

1. Symmetry I(X; Y ) = I(Y ; X).

2. I(X; Y ) = H(X) − H(X|Y ) .

3. I(X; X) = H(X) .

4. Chain rule: I(X1, X2, ..., Xn; Y ) =
∑n

i=1
I(Xi; Y |X1, ..., Xi−1).

5. Data processing inequality: if (X, Y, Z) form a Markov chain, then

I(X; Y ) ≥ I(X; Z). As a consequence, I(X; Y ) ≥ I(X; f(Y )) for any

function f of Y .
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A.3 Extensions

While the above notions were defined for discrete variables, entropy and

mutual information can be extended to continuous variables (Shanon, 1948;

Cover & Thomas, 1991). This issue is beyond of the scope of the current

manuscript. Also, the notion of information can be extended to more than

two variables using the view that information measure the KL distance from

independence

Definition A.3.1 : Multi Information

The multi information I(X1; . . . ; Xn) of n random variables is the KL di-

vergence between their joint distribution and the product of their marginals

I(X1; . . . ; Xn) =
∑

x1,...,xn

p(x1, ..., xn) log
p(x1, ..., xn)

∏
i p(xi)

. (A.10)

By this definition the multi information provides some measure of the de-

pendence between all the variables. From the non negativity of the DKL

we obtain that the multi information is non negative. The properties of the

multi information measure are further discussed in (Studenty & Vejnarova,

1998).
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Table of symbols

AI Auditory cortex
BF Best Frequency
DKL[p||q] The Kullback Liebler divergence (Definition A.2.1)
H(X) The entropy of a discrete variable X (Definition A.1.1)
I(X; Y ) The Mutual information of two variables X and Y (A.2.4)
I[p] The mutual information of variables with a joint distribution p

IC inferior colliculus
JS[p||q] The Jensen-Shannon divergence (A.2.2)
MGB Medial Geniculate body of the thalamus
MI Mutual information
n Sample size
N Number of variables
p Probability distribution. p(X, Y ) is the joint distribution of X and Y

p̂ Probability distribution that is estimated from empirical data
R Neural responses (a random variable)
S Stimulus (a random variable)
STRF Spectro-Temporal Receptive Field
T (R) A statistic of the responses
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