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Abstract

People easily recognize new visual categories that are new combinations of known
components. This compositional generalization capacity is critical for learning
in real-world domains like vision and language because the long tail of new com-
binations dominates the distribution. Unfortunately, learning systems struggle
with compositional generalization because they often build on features that are
correlated with class labels even if they are not “essential” for the class. This
leads to consistent misclassification of samples from a new distribution, like new
combinations of known components.
Here we describe an approach for compositional generalization that builds on causal
ideas. First, we describe compositional zero-shot learning from a causal perspec-
tive, and propose to view zero-shot inference as finding “which intervention caused
the image?”. Second, we present a causal-inspired embedding model that learns
disentangled representations of elementary components of visual objects from
correlated (confounded) training data. We evaluate this approach on two datasets
for predicting new combinations of attribute-object pairs: A well-controlled synthe-
sized images dataset and a real-world dataset which consists of fine-grained types
of shoes. We show improvements compared to strong baselines. Code and data are
provided in https://github.com/nv-research-israel/causal_comp

1 Introduction

Compositional zero-shot recognition is the problem of learning to recognize new combinations
of known components. People seamlessly recognize and generate new compositions from known
elements and Compositional Reasoning is considered a hallmark of human intelligence [33, 34, 6, 4].
As a simple example, people can recognize a purple cauliflower even if they have never seen one,
based on their familiarity with cauliflowers and with other purple objects (Figure 1b). Unfortunately,
although feature compositionality is a key design consideration of deep networks, current deep
models struggle when required to generalize to new label compositions. This limitation has grave
implications for machine learning because the heavy tail of unfamiliar compositions dominates the
distribution of labels in perception, language, and decision-making problems.

Models trained from data tend to fail with compositional generalization for two fundamental reasons:
distribution-shift and entanglement. First, recognizing new combinations is an extreme case of
distribution-shift inference, where label combinations at test time were never observed during training
(zero-shot learning). As a result, models learn correlations during training that hurt inference at
test time. For instance, if all cauliflowers in the training set are white, the correlation between
the color and the class label is predictive and useful. A correlation-based model like (most) deep
networks will learn to associate cauliflowers with the color white during training, and may fail when
presented with a purple cauliflower at test time. For the current scope, we put aside the fundamental
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.Figure 1: (a) The causal graph that generates an image. The solid arrows represent the real-world
processes by which the two categorical variables “Object” and “Attribute” each generate “core
features” [21, 17] φo and φa. The core features then jointly generate an image feature vector x.
The core features are assumed to be stable for unseen combinations of objects and attributes. The
dotted double-edged arrows between the Object and Attribute nodes indicates that there is a process
“confounding” the two: they are not independent of each other. (b) An intervention that generates
a test image of a purple-cauliflower, by enforcing a = purple and o = cauliflower. It cuts the
confounding link between the two nodes [49] and changes the joint distribution of the nodes to the
“interventional distribution”. (c) Illustration of the learned mappings, detailed in Section 4

semantic question about what defines the class of an object (cauliflower), and assume that it is given
or determined by human observers.

The second challenge is that the training samples themselves are often labeled in a compositional
way, and disentangling their “elementary” components from examples is often an ill-defined problem
[38]. For example, for an image labeled as white cauliflower, it is hard to tell which visual features
capture being a cauliflower, and which, being white. In models that learn from data the representation
of these terms may be inherently entangled, and it would be hard to separate which visual features
represent white and which represent a cauliflower.

These two challenges are encountered when learning deep discriminative models from data. For
example, consider a simple model that learns the concept “cauliflower”, by training a deep model
over all cauliflower images (VisProd [44]), and the same for the concept "white". At inference time,
simply select the most likely attribute â = arg maxa p(a|x) and, independently, the most likely
object ô = arg maxo p(o|x). Unfortunately, this model, while quite powerful, tends to be sensitive to
training-specific correlations in its input.

Here we propose to address compositional recognition by modelling images as being generated,
or caused, by real-world entities (labels) (Figure 1). This model recognizes that the distribution
p(Image=x|Attr=a,Obj=o) is more likely to be stable across the train and test environments(
ptest(x|a, o) = ptrn(x|a, o)

)
[54, 49, 57]: it means that unlike objects or attributes by themselves,

combinations of objects and attributes generate the same distribution over images in train and test.
We propose to consider images of unseen combinations as generated by interventions on the attribute
and object labels. In causal inference, intervention means that the value of a random variable is forced
to some value, without affecting its causes (but affecting other variables that depend on it, Figure 1b).
We cast zero-shot inference as the problem of finding which intervention caused a given image.

In the general case, the conditional distribution p(x|a, o) can have arbitrary an complex structure and
may be hard to learn. We explain how treating labels as causes, rather than as effects of the image,
reveals an independence structure that makes it easier to learn p(x|a, o). We propose conditional
independence constraints applied to the structure of this distribution and show how the model can be
learned effectively from data.

The paper makes the following novel contributions: First, we provide a new formulation of com-
positional zero-shot recognition using a causal perspective. Specifically, we formalize inference as
a problem of finding the most likely intervention. Second, we describe a new embedding-based
architecture that infers causally stable representations for compositional recognition. Finally, we
demonstrate empirically that in two challenging datasets, our architecture better recognizes new
unseen attribute-object compositions compared to previous methods.
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2 Related work

Attribute - object compositionality: [42] studied decomposing attribute-object combinations. They
embedded attributes and object classes using deep networks pre-trained on other large datasets. [45]
proposed to view attributes as linear operators in the embedding space of object word-embeddings.
Operators are trained to keep transformed objects similar to the corresponding image representation.
[46] proposed a method similar to [42] with an additional decoding loss. [60] used GANs to generate
a feature vector from the label embedding. [50] trained a set of network modules, jointly with a
gating network that rewires the modules according to embeddings of attribute and object labels. [37]
is a very recent framework inspired by group theory that incorporates symmetries in label-space.

Compositional generalizations: Several papers devised datasets to directly evaluate compositional
generalization for vision problems by creating a test set with new combinations of train-set com-
ponents. [25] introduced a synthetic dataset inherently built with compositionality splits. [1, 9]
introduced new compositional splits of VQA datasets [2] and show that the performance of existing
models degrades under their new setting. [26] used a knowledge graph for composing classifiers for
verb-noun pairs. [6] proposed an experimental framework for measuring compositional generalization
and showed that structured prediction models outperform image-captioning models.

Zero-shot Learning (ZSL): Compositional generalization can be viewed as a special case of zero-
shot learning [62, 35, 8], where a classifier is trained to recognize (new) unseen classes based on their
semantic description, which can include a natural-language textual description [48] or predefined
attributes [35, 7]. To discourage attributes that belong to different groups from sharing low-level
features, [24] proposed a group-sparse regularization term.

Causal inference for domain adaptation: Several recent papers take a causal approach to describe
and address domain adaptation problems. This includes early work by [55] and [64]. Adapting these
ideas to computer vision, [17] were one of the first papers to propose a causal DAG describing the
generative process of an image as being generated by a “domain”, which generates a label and an
image. They use this graph for learning invariant components that transfer across domains. [36, 3]
extended [17] with adversarial training [15]. It learned a single discriminative classifier, p(o|x),
that is robust against domain shifts and accounts for the dependency of classes on domains. When
viewing attributes as “domains”, one of the independence terms in their model corresponds to one
term (c) in Eq. (6). [28, 55] discusses image recognition as an “anti-causal” problem, inferring
causes from effects. [10, 27] studied learning causal structures under sparse distributional shifts. [40]
proposed to learn causal relationships in images by detecting the causal direction of two random
variables. [14] used targeted interventions to address distribution shifts in imitation learning. [32]
learned a conditional-GAN model jointly with a causal-model of label distribution. [5] proposed a
regularization term to improve robustness against distributional changes. Their view is complementary
to this paper in that they model the labeling processes, where images cause labels, while our work
focuses on the data generating process (labels cause images). [21] proposed a similar causal DAG for
images, while adding auxiliary information such as that some images are of the same instance with a
different “style”. This allowed the model to identify core features. The approach described in this
paper does not use such auxiliary information. It also views the “object” and “attribute” as playing
mutual roles, making their inferred representations invariant to each-other.

Unsupervised disentanglement of representations: Several works use a VAE [31] approach for
unsupervised disentanglement of representations [39, 22, 11, 13, 52, 41]. This paper focuses on
a different problem setup: (1) Our goal is to infer a joint attribute-object pair, disentangling the
representation is a useful byproduct. (2) In our setup, attribute-object combinations are dependent in
the training data, and new combinations may be observed at test time. (3) We do not use unsupervised
learning. (4) We take a simpler embedding based approach.

3 Method overview

We start with a descriptive overview of our approach. For simplicity, we skip here the causal
motivation and describe the model in an informal way from an embedding viewpoint.

Our model is designed to estimate p(x|a, o), the likelihood of an image feature vector x, conditioned
on a tuple (a, o) of attribute-object labels. For inference, we iterate over all combinations of labels
and select (â, ô) = argmaxa,o p(x|a, o).
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To estimate the distribution p(x|a, o), our model learns two embedding spaces: ΦA for attributes,
and ΦO for objects (see Figure 1a). These spaces can be thought of as semantic embedding spaces,
where an attribute a (say, “white") has some dense prototypical representation φa ∈ ΦA, and an
object o (say, a cauliflower) has a dense representation φo ∈ Φo. Given a new image x, we learn
a mapping to three spaces. First, an inferred attribute embedding φ̂a ∈ ΦA represents the attribute
seen in the image (say, how white is the object). Second, an inferred object embedding φ̂o ∈ ΦO
represents the object seen in the image (say, how “cauliflowered” it is). Finally, we also represent the
image in a general space of image features.

Learning the parameters of the model involves learning the three mappings above. In addition, we
learn the representation of the attribute prototype (“White”) φa ∈ ΦA and the representation of the
object prototype (“Cauliflower") φo ∈ ΦO. Very naturally, we want that a perceived attribute φ̂a
would be embedded close to its attribute prototype φa. Our loss captures this intuition. Finally, we
also aim to have the representation spaces of attributes and objects statistically independent. The
intuition is that we want to keep the representation of an object (cauliflower) independent of the
attribute (white), so we can recognize that object when seen with new attributes (purple cauliflower).

At this point, the challenge remains to build a principled model that can be learned efficiently from
data. We now turn to the formal and detailed description of the approach.

4 A causal formulation of compositional zero-shot recognition

We put forward a causal perspective that treats labels as causes of an image, rather than its effects.
This direction of dependencies is consistent with the mechanism underlying natural image generation
and, as we show below, allows us to recognize unseen label combinations.

Figure 1 presents our causal generative model. We consider two “elementary factors” which are
categorical variables called “Attribute” a ∈ A and “Object" o ∈ O, and are dependent (confounded)
in the training data. As one example, European swans (Cygnus) are white but Australian ones
are black. The data collection process may make ‘white’ and ‘swan’ confounded if collected in
Europe, even-though this dependency does not apply in Australia.. The model also has two semantic
representation spaces: one for attributes ΦA = RdA and another for objects ΦO = RdO . An attribute
a induces a distribution p(φa|a) over the representation space, which we model as a Gaussian
distribution. We denote by ha a function that maps a categorical attributes to the center of this
distribution in the semantic space ha : A → ΦA (Figure 1c). The conditional distribution is therefore
φa ∼ N (ha, σ

2
aI). We have a similar setup for p(φo|o) ∼ N (ho, σ

2
oI).

Given the semantic embedding of the attribute and object, the probability of an image feature vector
x ∈ X is determined by the representations p(x|φa, φo), which we model as Gaussian, w.r.t a
mapping g, x ∼ N (g(φa, φo), σ

2
xI). φa and φo can be viewed as an encoding of “core features”,

namely encoding a representation of attribute and object that is “stable" in the training set and test
set, as proposed by [21, 17]. Namely, the conditional distributions p(φa|a) and p(φo|o) do not
substantially change for unseen combinations of attributes and objects.

We emphasize that our causal graph is premised on the belief that what we use as objects and attributes
are truly distinct aspects of the world, giving rise to different core features. For attributes that have no
physical meaning in the world, it may not be possible to postulate two distinct processes giving rise
to separate core features.

4.1 Interventions on elementary factors

Causal inference provides a formal mechanism to address the confounding effect through a “do-
intervention”1. A ”Do-intervention“ overrides the joint distribution ptrn(a, o), enforcing a, o to
specific values and propagates them through the causal graph. With this propagation, an intervention
changes the joint distribution of nodes in the graph. Therefore, a test image is generated according to a
new joint-distribution, denoted in causal language as the interventional distribution pdo(A=a,O=o)(x).
Thus, for zero-shot learning, we postulate that inference about a test image is equivalent to asking:
Which intervention on attributes and objects caused the image?

1Our formalism and model can be extended to include other types of intervention on the joint distribution of
attributes and objects. For simplicity, we focus here on the most-common “do-intervention”.
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5 Inference
We propose to infer the attribute and object by choosing the most likely interventional distribution:

(â, ô) = argmax
a,o∈A×O

pdo(A=a,O=o)(x). (1)

This inference procedure is more stable than the discriminative zero-shot approach, since the genera-
tive conditional distribution is equivalent to the interventional distribution [55].

pdo(A=a,O=o)(x) = p(x|a, o). (2)

This holds both for training and test, so we simply write p(x|a, o). This likelihood depends on
the core features φA, φO which are latent variables; Computing the likelihood exactly requires to
marginalize (integrate) over the latent variables. Since this integral is very hard to compute, we take
a “hard" approach instead, evaluating the integrand at its most likely value. Since φA, φO are not
known, we estimate them from the image x, by learning a mapping function φ̂a = g−1A (x) (see Figure
1c). The supplemental describes these approximation steps in details. It shows that the negative
log-likelihood − log p(x|a, o) can be approximated by

L̂(a, o) =
1

σ2
a

||φ̂a − ha||2 +
1

σ2
o

||φ̂o − ho||2 +
1

σ2
x

||x− g(ha, ho)||2 . (3)

Here, ha, ho and g(ha, ho) are the parameters of the Gaussian distributions of φa, φo and x. The
factors a and o are inferred by taking the argmina,o L̂(a, o) of Eq. (3). Note that in the causal graph,
φa, φo are parent nodes of the image x, but φ̂a, φ̂o are estimated from x and are therefore child nodes
of x, and therefore do not immediately follow the conditional independence relations that φa, φo
obey. We elaborate on this point in section 6.

6 Learning
Our model consists of five learned mappings: hA, hO, g, g−1A and g−1O , illustrated in Figure 1c. All
mappings are modelled using MLPs.We aim to learn the parameters of these mappings such that the
(approximated) negative log-likelihood of Eq. (3) is minimized. In addition, we also include in the
objective several regularization terms designed to encourage properties that we want to induce on
these mappings. Specifically, the model is trained with a linear combination of three losses.

L = Ldata + λindepLindep + λinvertLinvert, (4)

where λindep ≥ 0 and λinvert ≥ 0 are hyperparameters. We now discuss these losses in detail.

(1) Data Likelihood loss. The first component of the loss, Ldata, corresponds to the (approximate)
negative log likelihood of the model, as described by Eq. (3)

Ldata = ||ha − g−1A (x)||2 + ||ho − g−1O (x)||2 + λaoLtriplet
(
x, (a, o), (a, o)neg

)
. (5)

For easier comparisons with [44], we replaced the rightmost term in Eq. (3) with the standard triplet
loss Ltriplet with Euclidean distance ||x− g(ha, ho)||2. λao ≥ 0 is a hyperparameter.

(2) Independence loss. The second component of the loss Lindep is designed to capture conditional-
independence relations and apply them to the reconstructed core factors φ̂a, φ̂o. By that, the following
property is encouraged: pdo(O=o)(φ̂o)≈pdo(A=a,O=o)(φ̂o) and pdo(A=a)(φ̂a))≈pdo(A=a,O=o)(φ̂a).
Namely, learning a representation of objects that is robust to attribute interventions, and vice versa.

In more detail, the causal graph (Figure 1a) dictates conditional-independence relations for the latent
core factors φa, φo:

(a) φa ⊥⊥O|A = a (b) φa ⊥⊥ φo|A = a, (6)
(c) φo ⊥⊥A|O = o (d) φa ⊥⊥ φo|O = o.

These relations reflect the independent mechanisms that generate the training data.

Since the core factors φa, φo, are latent and not observed, we wish that their reconstructions φ̂a
and φ̂o maintain approximately the same independence relations. For example, we encourage
(φ̂o ⊥⊥A|O = o) to capture the independence in Eq. (6)c.
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To learn mappings that adhere to these statistical independences over φ̂a and φ̂o, we regularize the
learned mappings using a differentiable measure of statistical dependence. Specifically, we use
the Hilbert-Schmidt Information Criterion (HSIC) [19, 20]. HSIC is a non-parametric method for
estimating the statistical dependence between samples of two random variables, based on an implicit
embedding into a universal reproducing kernel Hilbert space. In the infinite-sample limit, the HSIC
between two random variables is 0 if and only if they are independent [20]. HSIC also has a simple
finite-sample estimator which is easily calculated and is differentiable w.r.t. the input variables. In
supplemental Section B, we describe the details of Lindep and how it is optimized with HSIC, and
why minimizing Lindep indeed encourages the property pdo(O=o)(φ̂o)≈pdo(A=a,O=o)(φ̂o). This
minimization can be viewed as minimizing the “Post Interventional Disagreement” (PIDA) metric of
[58], a recently proposed measure of disentanglement of representations. We explain this perspective
in more detail in the supplemental (B.2).

There exist alternative measures for encouraging statistical independence, such as adversarial training
[15, 36, 3] or techniques based on mutual information [16, 53, 29]. HSIC has the benefit that it is
non-parametric and therefore does not require training an additional network. It was easy to optimize,
and was provide useful in previous literature [59, 56, 43, 18].

(3) Invertible embedding loss. The third component of the loss, Linvert, encourages the label-
embedding mappings ha, ho, and g(ha, ho) to preserve information about their source labels when
minimizing Ldata. Without this term, minimizing ||φ̂a − ha||2 may reach trivial solutions because
the model has no access to ground-truth values for φa or ha (same for φo, ho). Similar to [44], we use
a cross-entropy (CE) loss with a linear layer that classifies the labels that generate each embedding,
and a hyperparameter λg:

Linvert = CE(a, fa(ha))+CE(o, fo(ho))+λg
[
CE(a, fga(g(ha, ho)))+CE(a, fgo(g(ha, ho)))

]
.

7 Experiments
7.1 Data

Despite several studies of compositionality, current datasets used for evaluations are quite limited.
Two main benchmarks were used in evaluations of previous literature: MIT states [23] and UT-
Zappos50K [63].

The MIT-states dataset was labeled automatically using early technology of image search engine
based on text surrounding images. As a result, labels are often incorrect. We quantified label quality
using human raters , and found that they are too noisy to be useful for proper evaluations. In more
detail, we presented images to human raters, along with candidate attribute labels from the dataset.
Raters were asked to select the best and second-best attributes that describe the noun (multiple-choice
setup). Only 32% of raters selected the correct attribute for their first choice (top-1 accuracy), and
only 47% of raters had the correct attribute in one of their choices (top-2 accuracy). The top-2
accuracy was only slightly higher than adding a random label on top of the top-1 label (yielding
42%). To verify that raters were attentive, we also injected 30 “sanity” questions that had two “easy"
attributes, yielding top-2 accuracy of 100%. See supplemental (H) for further details. We conclude
that this level of ∼ 70% label noise is too noisy for evaluating noun-attribute compositionality.

Zappos: We evaluate our approach on the Zappos dataset, which consists of fine-grained types of
shoes, like “leather sandal” or “rubber sneaker”. It has 33K images, 16 attribute classes, and 12
object classes. We use the split of [50] and the provided ResNet18 pretrained features. The split
contains both seen pairs and unseen pairs for validation and test. It uses 23K images for training
of 83 seen pairs, a validation set with 3K images from 15 seen and 15 unseen pairs, and a test set
with 3K images from 18 seen and 18 unseen pairs. All the metrics we report for our approach and
compared baselines are averaged over 5 random initializations of the model.

AO-CLEVr: To evaluate compositional methods on a well-controlled clean dataset, we generated
a synthetic-images dataset containing images of “easy” Attribute-Object categories. We used the
CLEVr framework [25], hence we name the dataset AO-CLEVr. AO-CLEVr has attribute-object
pairs created from 8 attributes: { red, purple, yellow, blue, green, cyan, gray, brown } and 3 objects
{sphere, cube, cylinder}, yielding 24 attribute-object pairs. Each pair consists of 7500 images. Each
image has a single object that consists of the attribute-object pair. The object is randomly assigned
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Figure 2:
Example images
of AO-CLEVr
dataset and their
labels.

one of two sizes (small/large), one of two materials (rubber/metallic), a random position, and random
lightning according to CLEVr defaults. See Figure 2 for examples.

For cross-validation, we used two types of splits. The first uses the same unseen pairs for validation
and test. This split allows us to quantify the potential generalization capability of each method. In
the second split, which is harder, unseen validation pairs are not overlapping with the unseen test
pairs. Importantly, we vary the ratio of unseen:seen pairs on a range of (2:8, 3:7, . . . ,7:3), and for
each ratio we draw 3 random seen-unseen splits. We report the average and the standard error of the
mean (S.E.M.) over the three random splits and three random model initialization for each split. We
provide more details about the splits in the suppl.

7.2 Compared methods

(1) Causal. Our approach as described in Section 5. For Zappos it also learns a single layer network
to project the pretrained image features to the feature space X . We also evaluate a variant named
Causal λindep=0, which nulls the loss terms that encourage the conditional independence relations

(2) VisProd: A common discriminatively-trained baseline [45, 42]. It uses two classifiers over image
features to predict the attribute and object independently, and approximates p(a, o|x)∼p(a|x)p(o|x).

(3) VisProd&CI: A discriminatively-trained variant of our model. We use VisProd as a vanilla
model, regularized by the conditional independence loss Lindep, where we use the top network layer
activations of attributes and objects as proxies for φ̂a, φ̂o.

(4) LE: Label embedding [45] trains a neural network to embed images and attribute-object labels to
a joint feature space. LE is a vanilla baseline because it approximately models p(x|a, o), but without
modelling the core-features.

(5) ATTOP: Attributes-as-operators [45] views attributes as operators over the embedding space of
object label-embeddings. We use the code of [45] to train ATTOP and LE.

(6) TMN: Task-modular-networks [50] trains a set of network modules jointly with a gating network.
The gate rewires the modules according to embeddings of attributes and objects. We used the
implementation provided by the authors and followed their grid for hyperparameter search (details
in suppl.). Our results differ on Zappos because we report an average over 5 random initializations
rather than a single initialization as reported in [50]. Some random initializations reproduce well
their reported AUC metric.

We explicitly avoid using prior knowledge in the form of pretrained label embeddings, because we are
interested to quantify the effectiveness of our approach to naturally avoid unreliable correlations. Yet,
most of the methods we compare with, rely on pretrained embeddings. Thus, we provide additional
results using random initialization for the compared methods, denoted by an asterisk (e.g. LE*).

Implementation details of our approach and reproduced baselines are given in the supplemental.

7.3 Evaluation

In zero-shot (ZS) attribute-object recognition, a training set D has N labeled samples of images:
D = {(xi, ai, oi), i = 1 . . . N} , where each xi is a feature vector, ai ∈ A is an attribute label,
oi ∈ O is an object label and each pair (ai, oi) is from a set of (source) seen pairs S ⊂ A×O. At
test time, a new set of samples D′ = {xi, i = N + 1 . . . N +M} is given from a set of target pairs.
The target set is a union of the set of seen pairs S with new unseen pairs U ⊂ A ×O, U ∩ S = ∅.
Our goal is to predict the correct pair of each sample.

Evaluation metrics: We evaluate methods by the accuracy of their top-1 prediction for recognizing
seen and unseen attribute-object pairs. In AO-CLEVr, we compute the balanced accuracy across
pairs, namely, the average of per-class accuracy. This is the common metric to evaluate zero-shot
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benchmarks [61, 62]. Yet, in Zappos, we used the standard (imbalanced) accuracy, to be consistent
with the protocol of [50],

We compute metrics in two main evaluations setups, which differ in their output label space, namely,
which classes can be predicted. (1) Closed: Predictions can be from unseen class-pairs only. (2) Open:
Predictions can be from all pairs in the dataset, seen or unseen. This setup is also known as the
generalized zero-shot learning setup [62, 12]. Specifically, we compute: Seen: Accuracy is computed
on samples from seen class-pairs. Unseen: Accuracy is computed on samples from unseen class-
pairs. Harmonic mean: A metric that quantifies the overall performance of both Open-Seen and
Open-Unseen accuracy. It is defined as: H = 2(Accseen ∗Accunseen)/(Accseen +Accunseen). For
the harmonic metric, we follow the protocol of [61, 62], which does not take an additional post-
processing step. We note that some papers [50, 37, 12] used a different protocol averaging between
seen and unseen. Finally, we report the Area Under Seen-Unseen Curve (AUSUC), which uses a
post-processing step [12] to balance the seen-unseen accuracy. Inspired by the area-under-the-curve
procedure, it adjusts the level of confidence of seen pairs by adding (or subtracting) a constant (see
[12] for further details). To compute AUSUC, we sweep over a range of constants and compute the
area under the seen-unseen curve.

For early stopping, we use (i) The Harmonic for the open setup. (ii) The closed accuracy for the
closed setup. In Zappos, we followed [50] and use the AUSUC for early stopping at the closed setup.

All experiments were performed on a cluster of DGX-V100 machines. Training a single model for
1000 epochs on the 5 : 5 AO-CLEVr split (with ∼80K samples) takes 2-3 hours.

8 Results
We describe here the results obtained on AO-CLEVr (overlapping-split) and Zappos. Additional
results are reported in the supplemental, including the full set of metrics and numeric values;
using random initialization; results with the non-overlapping split (showing a similar trend to the
overlapping split); studying our approach in greater depth through ablation experiments; and an error
analysis.

AO-CLEVr: Figure 3 (right) shows the Harmonic metric for AO-CLEVr for the whole range of
unseen:seen ratios. Unsurprisingly, the more seen pairs are available, the better all models perform
for unseen combinations of attributes and objects. Our approach “Causal”, performs better than or
equivalent to all the compared methods. VisProd easily confuses the Unseen classes. ATTOP, is
better than LE on the open unseen pairs but performs substantially worse than all methods on the
seen pairs. TMN performs equally well as our approach for splits with mostly seen pairs but degrades
when the fraction of seen pairs is below 4:6.

The seen-unseen plane: By definition, our task aims to perform well in two different metrics (multi-
objective): accuracy on seen pairs and unseen pairs. It is therefore natural to compare approaches
by their performance on the seen-unseen plane. This is important, because different approaches
may select different operating points to trade-off accuracy on unseen for accuracy on seen. Figure 3
(left) shows how the compared approaches trade-off the metrics for the 5:5 split. ATTOP tends to
favor unseen-pairs accuracy over the accuracy of seen pairs, vanilla models like VisProd, LE tend
to favor seen classes. Importantly, it reveals that modelling the core-features largely improves the
unseen accuracy, without hurting much the seen accuracy. Specifically, comparing Causal to vanilla
baseline LE, improves the unseen acc. from 26% to 47% and reduces the seen acc. from 86% to 84%.
Comparing VisPros&CI to VisProd improves the unseen acc. from 19% to 38% and reduces the seen
Acc. from 85% to 82%.

UNSEEN SEEN HARMONIC CLOSED AUSUC

WITH PRIOR EMBEDDINGS
LE 10.7 ± 0.8 52.9 ± 1.3 17.8 ± 1.1 55.1 ± 2.3 19.4 ± 0.3
ATTOP 22.6 ± 2.9 35.2 ± 2.7 26.5 ± 1.4 52.2 ± 1.8 20.3 ± 1.8
TMN 9.7 ± 0.6 51.9 ± 2.4 16.4 ± 1.0 60.9 ± 1.1 24.6 ± 0.8

NO PRIOR EMBEDDINGS
LE* 15.6 ± 0.6 52.0 ± 1.0 24.0 ± 0.7 58.1 ± 1.2 22.0 ± 0.9
ATTOP* 16.5 ± 1.5 15.8 ± 1.9 15.8 ± 1.4 42.3 ± 1.5 16.7 ± 1.1
TMN* 6.3 ± 1.4 55.3 ± 1.6 11.1 ± 2.3 58.4 ± 1.5 24.5 ± 0.8

CAUSAL λindep=0 22.5 ± 2.0 45.5 ± 3.7 29.4 ± 1.5 55.3 ± 1.1 22.2 ± 0.9
CAUSAL 26.6 ± 1.6 39.7 ± 2.2 31.8 ± 1.7 55.4 ± 0.8 23.3 ± 0.3

Table 1: Results for
Zappos. ± denotes
the Standard Error of
the Mean (S.E.M.)
over 5 random model
initializations.
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Figure 3: Left: The seen-unseen plane for the 5:5 split. Modelling the core features largely improves
the unseen accuracy: Compare Causal to LE or to λindep=0 and compare VisPros&CI to VisProd.
Error bars denote Standard Error of the Mean (S.E.M.) over 3 random splits and three random seeds.
Right: Harmonic mean of seen-unseen accuracy for AO-CLEVR on a range of 20% to 70% unseen
classes. To reduce visual clutter, error bars are shown only for our Causal method and for a vanilla
baseline (LE).

Zappos: Our approach improves the Unseen and Harmonic metrics. For the “Closed” and “AUSUC”
metrics it loses compared to TMN.We note that results on the Closed metric are less interesting from
a causal point of view: A model cannot easily rely on the knowledge of which attribute-object pairs
tend to appear in the test set.

For both AO-CLEVr and Zappos, the independence loss improves recognition on unseen pairs but
hurts recognition of seen pairs. This is a known and important trade-off when learning models that
are robust for interventions [51]. The independence loss discourages certain types of correlations,
hence models do not benefit from them when the test and train distributions are identical (seen-pairs).
However, the loss is constructed in such a way that these are exactly the correlations that fail to
hold once the test distribution changes (unseen-pairs). Thus, ignoring these correlations improves
performance for samples of unseen-pairs.

9 Discussion

We present a new causal perspective on the problem of recognizing new attribute-object combinations
in images. We propose to view inference in this setup as answering the question “which intervention
on attribute and object caused the image”. This perspective gives rise to a causal-inspired embedding
model. The model learns disentangled representations of attributes and objects although they are
dependent in the training data. It provides better accuracy on two benchmark datasets.

The trade-off between seen accuracy and unseen accuracy reflects the fact that prior information
about co-occurrence of attributes and objects in the training set is useful and predictive. A related
problem has been studied in the setting of (non-compositional) generalized zero-shot learning [8].
We suggest that some of these techniques could be adapted to the compositional setting.

Several aspects of the model can be further extended by relaxing its assumptions. First, the assumption
that image features are normally distributed may be limiting, and alternative ways to model this
distribution may improve the model accuracy. Second, the model is premised on the prior knowledge
that the attributes and objects have distinct and stable generation processes. However, this prior
knowledge may not always be available, or some attribute may not have an obvious physical meaning.
E.g. “cute”, “comfortable” or “sporty”, and in a multi-label setting [47] it is challenging to reveal
what are the independent generation mechanisms themselves from confounded training data.

This paper focused on the case where attributes and objects are fully disentangled. Clearly, in natural
language, many attributes and object are used in a way are that makes them dependent. For example,
white wine is actually yellow, and the attribute a small bear is larger than a large bird. It remains
an interesting question to extend the fully disentangled case to learn specific dependencies while
leveraging the power of disentangled representations.

9



Broader Impact

Compositional generalization, the key challenge of this work, is critical for learning in real-world
domains where the long tail of new combinations dominates the distribution, like in vision-and-
language tasks or for the perception modules of autonomous driving.

A causality-based approach, like the one we propose, may allow vision systems to make more robust
inference, and debias correlations that naturally exist in the training data, allowing to use vision
systems in complex environments where the distribution of labels and their combinations is varying.
It has been shown in the past that vision systems may emphasize biases in the data, and the ideas put
forward in the paper may help make systems more robust to such biases.

Such approach may be useful for improving fairness in various applications, for example by providing
a more balanced visual recognition of individuals from minority groups.
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Supplementary Information:
A causal view of compositional zero-shot recog-
nition
A Approximating argmaxa,o p(x|a, o)

The conditional likelihood p(x|a, o) can be written by marginalizing over the latent factors φa and φo

p(x|a, o) =

∫∫
φa,φo

p(x, φa, φo|a, o) =

∫∫
φa,φo

p(x|φa, φo)p(φa|a)p(φo|o)dφodφa . (S.7)

Computing this integral is hard in the general case. Variational autoencoders (VAEs) [31] approximate
a similar integral by learning a smaller support using an auxiliary probability function Q over the
latent space. Here we make another approximation, taking a "hard" approach and find the single most
likely integrand.

argmax
(a,o)∈A×O

p(x|φa, φo)p(φa|a)p(φo|o) (S.8)

Based on Section 4, the three factors of the distributions are Gaussians. Therefore, maximizing
Eq. (S.8) is equivalent to minimizing the negative log likelihood

argmin
(a,o)∈A×O

1

σ2
x

||x− g(φa, φo)||2 +
1

σ2
a

||φa − ha||2 +
1

σ2
o

||φo − ho||2 . (S.9)

This expression is composed of three components. The components allow to infer (a, o) by evaluating
distances in three representation spaces X , ΦA and ΦO (Section 4).

However, we cannot apply Eq. (S.9) to infer (a, o) because the core features φa, φo are latent. Next,
we introduce two additional approximations we use to apply Eq. (S.9). The first, approximates
||x− g(φa, φo)||2 by ||x− g(ha, ho)||2, using a Taylor expansion at the means (φa, φo) = (ha, ho).
The second, recovers (infers) the core features φa, φo from the image, and substitute the recovered
features in ||φa − ha||2, ||φo − ho||2.

A.1 Approximating ||x− g(φa, φo)||2

A causal model can be equivalently represented using a“Structural Causal Model” (SCM) [49].
An SCM matches a set of assignments to a causal graph. Each node in the graph is assigned a
deterministic function of its parent nodes and an independent noise term. Specifically, based on the
Gaussian assumptions in Section 4, the SCM of our causal graph (Figure 1a) is

φa = na + ha (S.10)
φo = no + ho (S.11)
x = nx + g(φa, φo), , (S.12)

where na, no, nx are jointly independent Gaussian random variables na ∼ N (0, σ2
aI), no ∼

N (0, σ2
oI), nx ∼ N (0, σ2

xI). na, no, nx represent sampling from the manifold of attributes, ob-
jects and images near their prototypes ha and ho.

We use a zeroth-order Taylor expansion of g(φa, φo) at (φa, φo) = (ha, ho) and make the following
approximation (

x− g(φa, φo)
)
≈
(
x− g(ha, ho)

)
. (S.13)

Next, we discuss the first-order approximation error. For brevity, we denote with φao the concate-
nation of the elements in (φa, φo) into a single vector. Similarly (ha, ho) into hao and (na, no) into
nao.

We approximate g(φao) by a first-order Taylor expansion at φao = hao to

g(φao) ≈ g(hao) + [Jg](hao) · (φao − hao) = g(hao) + [Jg](hao) · nao, (S.14)

where [Jg] is the Jacobian of g and the last equality stems from the SCM (Eqs. S.10, S.11).
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Using Eq. (S.14) and the Cauchy-Schwarz inequality, the first-order squared error approximation of
Eq. (S.13) is:

E||
(
x− g(φao)

)
−
(
x− g(hao)

)
||2 = E||g(φao)− g(hao)||2

≈ E||[Jg](hao)nao||2 ≤ ||[Jg](hao)||2FE||nao||2 (S.15)

This implies that the error of the approximation Eq. (S.13) is mainly dominated by the gradients
of g at hao, and the variance of nao. If the gradients and the variance of nao are too large, then
this approximation may be too coarse, and one may resort to more complex models like variational
methods [31]. Empirically, we observe that this approximation is useful.

A.2 Recovering the core features

To apply Eq. (S.9), we approximate φa, φo, by reconstructing (inferring) them from the image.

The main assumption we make is that images preserve the information about the core features
they were generated from, at least to a level that allows us to differentiate what were the semantic
prototypes (ha and ho) of the core feature. Otherwise, inference on test data and labeling the training
data by human raters will render to random guessing.

Therefore, we assume that there exists an inverse mappings that can infer φa and φo from the image
up to a reasonably small error:

φ̂a ≡ g−1A (x) = φa + εA(x) (S.16)

φ̂o ≡ g−1O (x) = φo + εO(x) , (S.17)

where εA(x), εO(x) denote the image-based error of inferring the attribute and object core features.

Specifically, we assume that the error in substituting φa by φ̂a and φo by φ̂o in Eq. (S.9) is small
enough to keep them close to their prototypes (ha and ho). Namely, we make the following approxi-
mation

||φa − ha||2 = ||φ̂a − εA(x)− ha||2 ≤ ||φ̂a − ha||2 + ||εA(x)||2 ≈ ||φ̂a − ha||2

||φo − ho||2 = ||φ̂o − εO(x)− ho||2 ≤ ||φ̂o − ho||2 + ||εO(x)||2 ≈ ||φ̂o − ho||2 . (S.18)

To conclude, we use Eq. (S.13) and Eq. (S.18) to approximate Eq. (S.9) by :

argmin
(a,o)∈A×O

1

σ2
x

||x− g(ha, ho)||2 +
1

σ2
a

||φ̂a − ha||2 +
1

σ2
o

||φ̂o − ho||2,

which is the expression for Eq. (3) in the main paper.

B Independence Loss

Our loss includes a component Lindep, which is designed to capture the conditional-independence
relations that the causal graph dictates (Eq. (6)). We now describe Lindep in detail.

Since we do not have the actual values of the latent core features φa, φo, we wish that their recon-
structions φ̂a and φ̂o maintain approximately the same independence relations as Eq. (6). To learn
mappings that adhere to these statistical independences over φ̂a and φ̂o, we regularize the learned
mappings using a differentiable measure of statistical dependence.

Specifically, we use a positive differentiable measure of the statistical dependence, denoted by
I. For two variables (u, v), conditioned on a categorical variable Y , we denote by I(u, v|Y ) the
positive differentiable measure of the statistical conditional dependence of (u, v|Y ). For example we
encourage approaching the equality in Eq. 6b by minimizing I(φ̂a, φ̂o|A). I is based on measuring
the Hilbert-Schmidt Information Criterion (HSIC) [19, 20], which is a non-parametric method for
estimating the statistical dependence between samples of two variables. We adapt the HSIC criterion
to measure conditional dependencies. I penalizes conditional dependencies in a batch of samples
B =

{
(ui, vi, yi)

}|B|
i=1

, by summing over groups of samples that have the same label:
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I(u, v|Y ) =
1

|Y |
∑
y∈Y

HSIC(U |Y = y, V |Y = y) (S.19)

where (U |Y = y, V |Y = y) =
{

(ui, vi) ∈ B | yi = y
}
.

Finally, we have Lindep, a loss term that encourages the four conditional independence relations of 6:

Lindep = Loh + λrepLrep (S.20)

Loh = I
(
φ̂a, O|A

)
+ I

(
φ̂o, A|O

)
(S.21)

Lrep = I
(
φ̂a, φ̂o|A

)
+ I

(
φ̂a, φ̂o|O

)
, (S.22)

where λrep is a hyper parameter.

Minimizing Eq. (S.21) encourages the representation of the inferred attribute φ̂a, to be invariant to
the categorical (“one-hot”) representation of an object O. Minimizing Eq. (S.22) encourages φ̂a to be
invariant to the “appearance” of an object (φ̂o).

B.1 An expression for Hilbert-Schmidt Information Criterion (HSIC) with linear kernel

The linear-kernel HSIC between two batches of vectors U,V is calculated in the following manner
[20]: It uses two linear kernel matrices Ki,j = u[i,:]u

T
[j,:], Li,j = v[i,:]v

T
[j,:]. Then the HSIC is

calculated as the scaled Hilbert-Schmidt norm of their cross-covariance matrix:

HSIC(U, V ) =
1

(n− 1)2
· tr(KHLH),

where Hij = δi,j − 1
n is a centering matrix , and n is the batch size

B.2 Minimizing Lindep encourages robustness of the reconstructed core features φ̂a, φ̂o.

The conditional-independence term of Loh within Lindep is related to a metric named “Post Inter-
ventional Disagreement” (PIDA), recently introduced by [58]. PIDA measures disentanglement
of representations for models that are trained from unsupervised data. This section explains their
relation in more detail, by showing that minimizing Lindep encourages the following properties:
pdo(O=o)(φ̂o)≈pdo(A=a,O=o)(φ̂o) and pdo(A=a)(φ̂a))≈pdo(A=a,O=o)(φ̂a).

The PIDA metric for attributes is measured by

PIDA(a′|a, o) := d
(
Edo(a)[φ̂a′ ],Edo(a,o)[φ̂a′ ]

)
, (S.23)

where d is loosely described as “a suitable” positive distance function (like the L2 distance).
PIDA(a′|a, o) quantifies the shifts in the inferred features φ̂a′ when the object is enforced to
o. Similarly, the PIDA term for objects is PIDA(o′|o, a).

Below we show that encouraging the conditional independence (φ̂a ⊥⊥O|A), is equivalent to mini-
mizing d

(
pdo(a)(φ̂a′), p

do(a,o)(φ̂a′)
)

and therefore minimizes PIDA(a′|a, o).

First, in our causal graph (Figure 1a) a do-intervention on both a and o is equivalent to conditioning
on (a, o)

pdo(a,o)(φ̂a′) = p(φ̂a′ |a, o). (S.24)

Second, minimizing Eq. (S.21) encourages the conditional independence (φ̂a′ ⊥⊥ O|A), which
is equivalent to minimization of d

(
p(φ̂a′ |a), p(φ̂a′ |a, o)

)
2. Third, when d

(
p(φ̂a|a), p(φ̂a|a, o)

)
approaches zero, then pdo(a)(φ̂a) approaches p(φ̂a|a). This stems from the adjustment for-
mula, pdo(a)(φ̂a′) =

∑
o p(φ̂a′ |a, o)p(o): When d

(
p(φ̂a′ |a), p(φ̂a′ |a, o)

)
approaches zero, then

2When (φ̂a′ ⊥⊥ O|A), then by definition p(φ̂a′ |a, o) = p(φ̂a′ |a). Therefore encouraging (φ̂a′ ⊥⊥ O|A),
makes p(φ̂a′ |a, o) approach p(φ̂a′ |a)
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∑
o p(φ̂a′ |a, o)p(o) approaches

∑
o p(φ̂a′ |a)p(o) = p(φ̂a′ |a). Therefore pdo(a)(φ̂a′) approaches

p(φ̂a′ |a).

As a result, we have the following: Minimizing Eq. (S.21) leads to pdo(a,o)(φ̂a′) approaching
p(φ̂a′ |a), which as we have just shown, leads to p(φ̂a′ |a) approaching pdo(a)(φ̂a′). Therefore,
d
(
pdo(a)(φ̂a′), p

do(a,o)(φ̂a′)
)

is minimized and accordingly, PIDA(a′|a, o) (Eq. S.23) is minimized.

Similarly, for objects, encouraging the conditional independence (φ̂o′ ⊥⊥ A|O) minimizes
PIDA(o′|a, o). Therefore, minimizing Loh (Eq. S.21), optimizes both PIDA(a′|a, o) and
PIDA(o′|a, o).

C Implementation details

C.1 Architecture

Similar to LE [44], we implemented g, ha and ho by MLPs with ReLU activation. For g−1A and g−1O ,
every layer used a batch-norm and leaky-relu activation. All the MLPs share the same size of hidden
layer, denoted by dh.

For experiments on Zappos, we also learned a single layer network f to project pretrained image
features to the feature space X . This strategy was inspired by the baseline models LE and ATTOP.
Learning a projection f finds better solutions on the validation set than using the pretrained features
as X .

For HSIC we used the implementation of [18] and applied a linear kernel as it does not require tuning
additional hyper-parameters.

C.2 Optimization

AO-CLEVr: We optimized AO-CLEVr in an alternating fashion: First we trained ha, g−1A and
g, keeping ho, g−1O frozen. Then we froze ha, g−1A and trained ho, g−1O and g. This optimization
strategy allows to stabilize the attribute representation when minimizing Eq. (S.22). The strategy was
developed during the early experiments with a low-dimensional (X ⊂ R2) synthetic dataset. In the
ablation study (Section F below), we show that a standard (non-alternating) optimization strategy
achieves comparable results, but with somewhat higher bias toward seen accuracy.

We used SGD with Nesterov Momentum to train with AO-CLEVr. Empirically, we found that SGD
allowed finer control over Lindep than Adam [30].

In practice, we weighed the loss of ||φ̂a − ha||2 and ||φ̂o − ho||2 according to the respective attribute
and object frequencies in the training set. This detail has a relatively small effect on performance.
Without weighing the loss, the Harmonic decreases by 1.2% (from 68.8% to 67.6%) and Unseen
accuracy decreases by 1.3% (from 57.5% to 56.2%).

Zappos: We optimized Zappos in a standard (non-alternating) fashion. We couldn’t use the alter-
nating optimization strategy, because in Zappos we also learn a mapping f that projects pretrained
image features to the feature space X . Thus, updating the parameters of f changes the mapping to X
and we cannot keep ha, g−1A frozen once X changes.

As in [44], we used Adam [30] to train with Zappos.

C.3 Early Stopping and Hyper-parameter selection

We trained each model instantiation for a maximum of 1000 epochs and early stopped on the
validation set.

We used two metrics for early-stopping and hyper-parameter selection on the validation set: (i)
the Harmonic metric for testing the unseen-accuracy, the seen-accuracy and the Harmonic; and (ii)
accuracy of the Closed metric for testing the Closed accuracy. In Zappos, we followed [50] and used
the AUSUC for testing both the AUSUC metric and the Closed accuracy.
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For our approach and all the compared methods, we tuned the hyper-params by first taking a coarse
random search, and then further searching around the best performing values on the validation set.
As a rule of thumb, we first stabilized the hyper-parameters of the learning-rate, weight-decay, and
architecture. Then we searched in finer detail over the hyper-parameters of the loss functions. At
the most fine-grained iteration of the random search, each combination of hyper-parameters was
evaluated with 3 different random weight initializations, and metrics were averaged over 3 runs. We
chose the set of hyper-parameters that maximized the average metric of interest.

Since AO-CLEVr has 6 · 3 = 18 different splits, we searched the hyper-parameters over a single split
of each of the ratios {2:8, 5:5, 6:4, 7:3}. For {3:7, 4:6} ratios, we used the hyper-parameters chosen
for the {5:5} split.

C.4 Hyper-parameters for loss function

In practice, to weigh the terms of the loss function, we use an equivalent but different formulation.
Specifically, we set λindep=1 and λinvert=1, and use the following expressions for Lindep and
Linvert

Lindep = λohLoh + λrepLrep (S.25)

Linvert = λicore
(
CE(a, fa(ha)) + CE(o, fo(ho))

)
+ (S.26)

λig
(
CE(a, fga(g(ha, ho))) + CE(a, fgo(g(ha, ho)))

)
.

where λoh, λrep, λicore and λig weigh the respective loss terms.

C.5 Grid-search ranges

For Causal with AO-CLEVr, we started the random grid-search over the following
ranges: Architecture: (1) Number of layers for ha and ho ∈ {0, 1, 2}, (2) Number
of layers for g−1A and g−1O ∈ {1, 2, 3}, (3) Number of layers for g ∈ {2, 4}, (4) Com-
mon size of hidden layers dh ∈ {10, 30, 150, 300, 1000}3. Optimization: (1) learning
rate ∈ {1e-5, 3e-5, 1e-4, 3e-4, 1e-3}, when using alternate training, we used different
learning rates for each alternation. (2) weight-decay ∈ {1e-5, 1e-4, 1e-3, 0.01, 0.1, 1}
(3) λrep ∈ {0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300} (4)
λoh ∈ {0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300} (5) λao ∈
{0, 0.1, 0.3, 1, 3, 10} (6) λicore ∈ {0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100} (7) λig ∈
{0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100}. We didn’t tune batch-size, we set it to 2048.

For Causal with Zappos, we used some hyper-parameters found with Causal&AO-CLEVr and some
already known for LE with Zappos. Specifically, for the architecture, we set (1) Number of hidden
layers for ha and ho = 0 (linear embedding), (2) Number of layers for g−1A and g−1O = 2, (3) Number
of layers for g = 2 (4) Common size of hidden layers dh = 300. For the optimization, in order to
find a solution around the solution used by LE, we selected λao = 1000, λig = 0,weight-decay =
5e-5, batch-size = 2048; and λicore = 100 as with Causal&AO-CLEVr. We applied the random
search protocol over λrep ∈ 15 · {0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, }, λoh ∈ 15 ·
{0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, }, and learning rate ∈ {1e-4, 3e-4}
For TMN, we applied the random grid-search according to the ranges defined in the supple-
mental of [50]. Specifically: lr ∈ {0.0001, 0.001, 0.01, 0.1}, lrg ∈ {0.0001, 0.001, 0.01, 0.1},
batch-size ∈ {64, 128, 256, 512}, concept-dropout ∈ {0, 0.05, 0.1, 0.2}, nmod ∈ {12, 18, 24, 30},
output-dimension ∈ {8, 16}, number-of-layers ∈ {1, 2, 3, 5}. Additionally, we trained TMN for
a maximum of 30 epochs, which is ×6 longer than the recommended length (4-5 epochs). As
instructed, we chose the number of negatives to be “all negatives”. With Zappos, our grid-search
found a hyper-parameters’ combination with better performance than the one reported by the authors.

For ATTOP with AO-CLEVr, we used the following ranges: λaux ∈
{0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100},
λcomm ∈ {0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100},

3We used 150 and not 100, in order to have total size of 2 · 150 = 300 for the concatenated representation of
[φ̂a, φ̂o]. 300 is comparable to the default value for emb-dim in the LE baseline.
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emb-dim ∈ {10, 30, 150, 300, 1000}, weight-decay ∈ {1e-5, 1e-4, 1e-3, 1e-2}. We used the default
learning rate 1e-4, and used a batch size of 2048.

For ATTOP with Zappos, we used the hyper-parameters combinations recommended by [44, 50], and
also searched for emb-dim ∈ {300, 1000}
For LE, we used the following ranges: weight-decay ∈ {1e-4, 1e-3, 1e-2}, emb-dim ∈
{10, 30, 150, 300, 1000}. With Zappos we also followed the guideline of [50] and searched
lr ∈ {0.0001, 0.001}.
Note that for ATTOP and LE, when Glove embedding is enabled then emb-dim is fixed to 300.

For VisProd with AO-CLEVr, we used the following ranges: We used the same number of layers,
weight-decay and learning rates as used to train “Causal”. We also followed the alternate-training
protocol. With Zappos, we searched for emb-dim ∈ {100, 300, 1000}, lr ∈ {1e-4, 1e-3}.

C.6 AO-CLEVr dataset

Pretrained features: Similar to Zappos, we extracted pretrained features for AO-CLEVr using a
pretrained ResNet18 CNN.

Cross validation splits: For cross-validation, we used two types of splits. The first uses the same
unseen pairs for validation and test. We call this split the “overlapping” split. The split allows
us to quantify the potential generalization capability of each method. The second split, is harder,
where unseen validation pairs are not overlapping with the unseen test pairs. We call this split the
“non-overlapping” split.

For the overlapping split, we varied the ratio of unseen:seen pairs on a range of (2:8, 3:7, . . . 7:3),
and for each ratio we drew 3 random seen-unseen splits. For the non-overlapping split, we varied
the ratio of unseen:seen pairs on a range of (2:6, 3:5, . . . 5:3), and for each ratio we drew 3 random
seen-unseen splits. In addition, we always draw 20% of the pairs for validation.

D AO-CLEVr with a non-overlapping validation set.

Here we present results for AO-CLEVr with the “non-overlapping” split. For this split, the unseen
validation pairs are not overlapping with the unseen test pairs. It is harder than the “overlapping”
split, which uses the same unseen pairs for validation and test.

The non-overlapping split is important because, in practice, we cannot rely on having labeled samples
of the unseen pairs for validation purposes.

Figure S.1 shows the measured metrics when comparing “Causal”, LE, TMN, and ATTOP and
varying the ratio of seen:unseen pairs between 2:6 to 5:3.

For the main zero-shot metrics (Open-Unseen, Harmonic and Closed), our approach “Causal”,
performs substantially better than the compared methods. ATTOP performs substantially worse on
“seen" pairs.
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Figure S.1: AO clevr with a non-overlaping validation set.

E Complete results for AO clevr with overlapping split

Figure S.2 shows the accuracy metrics for compared approaches with AO-CLEVR when varying the
fraction of seen:unseen classes (between 2:8 to 7:3). The top row in the figure shows the measured
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metrics. The bottom row shows the difference (subtraction) from LE. We selected LE as the main
reference baseline because its embedding loss approximately models p(x|a, o), but without modeling
the core-features.
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Figure S.2: Accuracy metrics for AO-CLEVR on a sweep of 20% unseen classes up to 70% unseen
classes. The top row show the measured metrics. The bottom row show the difference (subtraction)
of measured metrics from the LE baseline method. Error bars denote Standard Error of the Mean
(S.E.M) over 3 random splits. To reduce visual clutter, error bars are shown only for our Causal
method and for the reference baseline (LE).

Across the full sweep of unseen:seen ratios, our approach “Causal”, performs better than or equivalent
to all the compared methods for the main zero-shot metrics (Open-Unseen, Harmonic and Closed).
VisProd, which approximates p(a, o|x), has a relatively low Unseen accuracy. VisProd&CI, the
discriminatively-trained variant of our model, improves the Unseen performance by a large margin,
while not hurting VisProd Seen accuracy. ATTOP is better than LE on open unseen pairs but performs
substantially worse than all methods on the seen pairs. TMN performs equally well as our approach
for splits with mostly seen pairs (unseen:seen @ 2:8, 3:7, 4:6), but degrades when the fraction of
seen pairs reduces below 60%.

E.1 Baseline models without language embeddings

Figure S.3 compares LE, ATTOP, and TMN with and without initialization by Glove word embedding.
It demonstrates that for AO-CLEVr, Glove initialization somewhat hurts LE, improves ATTOP, and
is mostly equivalent to TMN.
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Figure S.3: Comparing LE, ATTOP, and TMN with and without initialization by Glove word
embedding. Glove initialization somewhat hurts LE, improves ATTOP, and is mostly equivalent for
TMN.

F Ablation study

To understand the contribution of the different components of our approach, we conducted an ablation
study to quantify the effect of the components. We report test metrics for one of the 5:5 “overlapping”
splits of AO-CLEVr. Specifically, the split used for hyper-parameter search.
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UNSEEN SEEN HARMONIC CLOSED

CAUSAL 57.5 ± 2.3 85.7 ± 3.4 68.8 ± 2.1 73.8 ± 1.0
λindep = 0 30.0 ± 1.5 97.2 ± 0.2 45.7 ± 1.8 68.4 ± 1.0
λao = 0 44.9 ± 1.9 83.5 ± 5.6 58.1 ± 0.3 72.9 ± 3.0
λinvert = 0 19.5 ± 2.2 46.5 ± 2.9 27.3 ± 2.3 28.5 ± 4.6

NON-ALTERNATE TRAINING
CAUSAL 53.3 ± 2.0 90.6 ± 2.3 67.0 ± 1.5 74.5 ± 1.2
λrep = 0 53.0 ± 4.7 91.3 ± 1.4 66.7 ± 3.3 70.7 ± 1.3
λoh = 0 52.8 ± 4.0 90.5 ± 0.6 66.5 ± 3.0 71.9 ± 2.0
λindep = 0 38.0 ± 2.3 94.6 ± 0.4 54.1 ± 2.4 68.9 ± 0.6

UNSEEN SEEN HARMONIC CLOSED

WITH PRIOR EMBEDDINGS
LE 21.4 ± 1.1 84.1 ± 1.8 34.0 ± 1.3 34.2 ± 2.4
ATTOP 48.7 ± 0.5 73.5 ± 0.8 58.5 ± 0.1 58.2 ± 0.5
TMN 32.3 ± 2.8 87.3 ± 4.1 47.0 ± 3.3 65.1 ± 3.0

NO PRIOR EMBEDDINGS
VISPROD 19.1 ± 1.3 94.3 ± 1.1 31.7 ± 1.8 60.1 ± 0.2
LE* 28.2 ± 1.7 87.5 ± 0.5 42.5 ± 1.9 43.4 ± 2.7
ATTOP* 45.6 ± 0.5 76.3 ± 1.0 57.0 ± 0.1 54.6 ± 1.3
TMN* 36.6 ± 5.2 89.1 ± 3.5 51.6 ± 5.6 66.5 ± 4.3

VISP&CI 40.5 ± 2.7 84.7 ± 4.3 54.4 ± 1.8 59.9 ± 0.3

Table S.1: Left: Ablation study on a 5:5 split of AO-CLEVr. We use the split used for hyper-param
search. ± denote S.E.M on 3 random initializations. Right: Reference metrics for baselines.

Table S.1 reports the test metrics when ablating different components of our approach: We first
compared the different components of the model while using alternate-training (see implementation
details). Next, we compared the alternate-training strategy to standard (non-alternate) training.
Finally, we compared the different components of the conditional-independence loss.

We compared the following components:

1. “Causal” is our approach described in Section 4. We tested is with both alternate training,
and standard (non-alternate) training.

2. λindep = 0 indicates nullifying the loss terms that encourage the conditional independence
relations.

3. λao = 0 indicates nullifying the embedding to the image space X .
4. λinvert = 0 indicates nullifying the term that preserves information about source labels of

the attribute and object embeddings.

5. λrep = 0 indicates nullifying Lrep: The term that encourages invariance between φ̂a to φ̂o.

6. λoh = 0 indicates nullifying Loh: The term that encourages invariance of φ̂a to a categorical
representation of an object (and similarly for φ̂o).

First, we find that both alternate-training and standard non-alternate training result in a comparable
Harmonic metric. However, alternate training has a better Unseen accuracy (57.5% vs 53.3%), but
lower Seen accuracy (85.7% vs 90.6%)

Second, nullifying each of the major components of the loss has a substantial impact on the perfor-
mance of the model. Specifically, (1) nullifying λindep reduces the Harmonic from 68.8% to 45.7%,
(2) nullifying λao reduces the Harmonic to 58.1%, (3) nullifying λinvert reduces the Harmonic to
27.3%.

Finally, Loh and Lrep have a synergistic effect on the performance of AO-CLEVr. Their individual
performance metrics are comparable, but jointly they improve the Closed accuracy from ∼71.5% to
74.5%.

Accuracy versus hidden layer size: Figure S.4 shows the different accuracy metrics when chang-
ing the hidden layer size for the 5:5 split of AO-CLEVr. It shows that the seen accuracy increases
with the layer size, presumably because it can capture more subtleties of the seen pairs. The unseen
accuracy appears to be bi-modal, with peaks at 15-units and 150 units. Indeed the cross-validation
procedure selected a layer size of 150, because it maximized the harmonic-mean of the seen and
unseen accuracy.

G Error analysis

G.1 Zappos

We analyzed the errors that Causal makes when recognizing unseen pairs in Zappos (open). In
53% of cases the object was predicted correctly, in 14% the attribute was predicted correctly and in

20



5 10 2 5 100 2 5

30
40
50
60
70
80
90 Closed

Harmonic
Seen
Unseen

Hidden layer dimension

A
cc

ur
ac

y
Figure S.4: Ablation: Accuracy versus hidden layer size (in a logarithmic scale)

33% neither. It appears that in Zappos, recognizing the object transferred better to the unseen pairs,
presumably because recognizing the attributes is harder in this dataset.

To gain further intuition, we compared the errors that Causal makes to those of LE*, the strongest
no-prior baseline. With Causal, 39% of unseen pairs (U) are confused for seen pairs (S), and 36% of
unseen pairs are confused for incorrect unseen-pairs. This yields a balanced rate of U→S

U→U = 39%
36% ≈

1.1. For comparison LE* errors are largely unbalanced: U→S
U→U = 67%

19% ≈ 3.5.

(a) Ground-truth = (Suede, Slippers)

(b) Ground-truth = (Hair.Calf, Shoes.Heels)

(c) Ground-truth = (Patent.Leather , Shoes.Heels)

Figure S.5: Qualitative examples of Causal success cases for Zappos: Every image was predicted
correctly by Causal, but erroneously by LE*. Above every image we denote the erroneous prediction
of LE*. (a) An unseen pair: the error rate was 40% for Causal, while it was 82% for LE*. (b) An
unseen pair: the error rate was 39% for Causal, while it was 58% for LE*. (c) A seen pair: the error
rate was 56% for Causal, while it was 83% for LE*.
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We further analyzed wins and losses of Causal compared with LE*, which are illustrated in Figure
S.5. Causal succeeded to overcome common failures of LE*, sometimes overcoming domain-shifts
that exist within the seen pairs. The main weakness of Causal is that the error rate for seen pairs is
higher compared to LE*. This effect is strongest for (1)

(
A=Leather, O=Boots.Ankle

)
, which was

mostly confused for either A=Full.grain.leather or A=Suede, while the object-class was correctly
classified. (2)

(
A=Leather, O=Boots.Mid-Calf

)
, which was mostly confused for A=Faux.Leather

while the object-class was correctly classified. This result shows that Causal is less biased toward
predicting Leather, which is the most common attribute in the training set.

G.2 AO-CLEVr

We analyzed the errors that Causal makes when recognizing unseen pairs at the 5:5 split4 of AO-
CLEVr (open). In 15% of cases the object was predicted correctly, in 82% the attribute was predicted
correctly and in 3% neither. It appears that in this case, recognizing the attribute transferred better to
the unseen pairs, because in this dataset colors can be easily recognized.

Comparing the errors that Causal makes to those of TMN*, the strongest no-prior baseline show that
with Causal, 19% of unseen pairs (U) are confused for seen pairs (S), and 20% of unseen-pairs are
confused for incorrect unseen-pairs, a balanced rate of U→S

U→U = 19%
20% ≈ 0.9. However, with TMN*,

confusion is largely unbalanced: U→S
U→U = 41%

13% ≈ 3.

Figure S.6: An example of a task on Amazon Mechanical Turk.

H Label-quality evaluation: Human-Rater Experiments

To better understand the level of label noise in MIT-states dataset we conducted an experiment with
human raters.

Each rater was presented with an image of an object and was asked to select the best and second-best
attributes that describe this object from a pre-defined list. The list was comprised of attributes that
co-occur with the given object in the dataset. For example, the object “apple” had candidate attributes
“green”, “yellow” and “red”, but not “black”. Raters were also presented with an option “none of
the above” and an option “I don’t know”, see Figure S.6. We sampled 500 instances of objects and
attributes, one from each attribute-object pair. As a label-quality score, we computed the balanced
accuracy of rater responses compared with the label provided by the dataset across the 500 tasks.
To verify that raters were attentive we also introduced a “sanity” set of 30 instances of objects for
which there were two clear attributes as answers. We also recorded the rate at which raters chose the
“none of the above” and “I don’t know” answers as a proxy for the difficulty of assigning labels to the
dataset. Balanced accuracy was computed by averaging the accuracy per attribute.

The average rater top-1 and top-2 accuracies were 31.79% and 47% respectively, indicating a label
noise level of ∼70%. The fraction of tasks that raters selected “none of the above” or “I don’t know”
was 5%, indicating that raters were confident in about ∼95% of their rating. The top-1 accuracy on
the “sanity” set was 88% and the top-2 accuracy was 100%, indicating that the raters were attentive
and capable of solving the task at hand.

4The split used for ablation study
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Finally, Fig. S.7 shows qualitative examples for the label quality of MIT-States. For each label of 5
attribute labels, selected by random, we show 5 images, selected by random. Under each image, we
show the choice of the amazon-turker in the label-quality experiment and the provided attribute label.

Lbl: Broken Lbl: Broken Lbl: Broken Lbl: Broken Lbl: Broken
AT: Broken AT: Modern AT: Ancient AT: Broken AT: Curved

Lbl: Burnt Lbl: Burnt Lbl: Burnt Lbl: Burnt Lbl: Burnt
AT: Melted AT: Splintered AT: Burnt AT: Ancient AT: Old

Lbl: Curved Lbl: Curved Lbl: Curved Lbl: Curved Lbl: Curved
AT: Curved AT: Engraved AT: Smooth AT: Curved AT: Curved

Lbl: Sliced Lbl: Sliced Lbl: Sliced Lbl: Sliced Lbl: Sliced
AT: Ripe AT: Cooked AT: Raw AT: Sliced AT: Cooked

Lbl: Empty Lbl: Empty Lbl: Empty Lbl: EmptyLbl: Empty
AT: Large AT: Bright AT: Modern AT: EmptyAT: Empty

Figure S.7: Label quality of MIT-States. Showing 5 attribute labels, selected by random. For each
label, we show 5 images, selected by random. For each image, we show the choice of the amazon-
turker (AT) and the provided attribute label (Lbl). Green image margins indicate that the turker choice
agrees with the label. Red margins indicate that the turker choice disagrees with the label.
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I Numeric values for the metrics

I.1 Overlapping split

U:S CAUSAL VISPROD&CI VISPROD
UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED

2:8 77.7 ± 1.4 89.7 ± 1.9 83.2 ± 1.2 87.0 ± 2.1 60.0 ± 2.7 87.8 ± 2.3 71.1 ± 1.7 85.9 ± 1.0 42.5 ± 3.0 90.1 ± 1.4 57.5 ± 2.9 87.3 ± 1.3
3:7 72.2 ± 1.0 80.9 ± 3.6 75.7 ± 2.3 84.1 ± 2.5 44.7 ± 5.0 84.3 ± 3.8 58.1 ± 4.9 72.6 ± 7.5 29.2 ± 3.7 85.6 ± 3.4 43.2 ± 4.4 73.5 ± 6.9
4:6 67.4 ± 2.0 84.1 ± 1.8 74.7 ± 1.7 86.6 ± 0.7 53.2 ± 1.5 87.9 ± 1.1 66.2 ± 0.9 88.2 ± 1.0 35.9 ± 3.6 85.0 ± 2.2 49.8 ± 2.9 87.0 ± 1.6
5:5 47.1 ± 4.5 83.8 ± 0.8 59.8 ± 3.9 71.6 ± 4.9 38.3 ± 1.1 82.1 ± 4.2 52.1 ± 1.8 65.4 ± 3.6 18.9 ± 0.2 84.5 ± 8.5 30.3 ± 0.8 61.6 ± 2.3
6:4 26.9 ± 0.5 86.1 ± 2.9 40.9 ± 1.0 44.6 ± 1.9 20.0 ± 1.8 86.4 ± 1.0 32.3 ± 2.4 39.6 ± 2.6 11.1 ± 1.4 81.0 ± 9.5 18.8 ± 1.5 37.4 ± 3.5
7:3 22.8 ± 3.0 69.3 ± 6.1 33.7 ± 4.2 40.9 ± 3.6 15.7 ± 2.5 68.5 ± 6.6 25.1 ± 3.4 38.9 ± 1.6 14.1 ± 1.5 50.0 ± 8.6 21.6 ± 2.4 36.8 ± 2.7

U:S LE* LE ATTOP*
UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED

2:8 72.1 ± 2.8 91.9 ± 0.2 80.7 ± 1.7 85.5 ± 1.8 72.7 ± 3.3 92.2 ± 0.3 81.2 ± 2.0 86.0 ± 1.5 78.4 ± 3.3 77.2 ± 1.0 77.6 ± 1.4 84.1 ± 4.0
3:7 41.9 ± 6.3 92.5 ± 0.3 56.8 ± 6.4 74.5 ± 4.5 42.1 ± 6.9 89.8 ± 2.8 56.6 ± 7.2 75.3 ± 5.1 62.5 ± 2.3 72.3 ± 1.4 66.9 ± 1.2 78.9 ± 4.1
4:6 57.8 ± 4.5 85.8 ± 1.5 68.6 ± 2.7 79.9 ± 2.7 47.2 ± 5.7 84.3 ± 1.6 59.7 ± 4.5 73.7 ± 1.6 68.8 ± 1.2 69.3 ± 2.8 68.8 ± 0.9 81.6 ± 2.1
5:5 31.7 ± 1.6 90.7 ± 1.4 46.8 ± 1.9 54.7 ± 5.6 26.3 ± 2.1 86.4 ± 1.1 40.2 ± 2.6 52.3 ± 8.3 44.3 ± 1.1 70.8 ± 2.3 54.4 ± 1.2 57.8 ± 2.5
6:4 20.1 ± 1.0 81.2 ± 4.7 31.9 ± 0.9 31.8 ± 1.3 20.8 ± 2.4 84.4 ± 2.6 33.1 ± 2.8 29.7 ± 1.7 25.8 ± 1.9 69.5 ± 2.2 37.4 ± 1.7 35.4 ± 0.3
7:3 13.7 ± 2.2 83.1 ± 3.8 23.1 ± 3.3 27.7 ± 3.4 11.4 ± 3.2 89.2 ± 3.3 19.7 ± 5.1 24.4 ± 6.0 10.6 ± 1.7 60.7 ± 7.7 17.9 ± 2.7 14.5 ± 1.6

U:S ATTOP TMN* TMN
UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED

2:8 79.9 ± 3.5 77.9 ± 1.1 78.7 ± 1.3 84.2 ± 3.9 78.4 ± 5.2 87.2 ± 0.8 82.2 ± 2.7 87.9 ± 1.5 79.7 ± 4.4 85.8 ± 0.9 82.4 ± 2.1 88.7 ± 1.6
3:7 64.3 ± 3.3 72.7 ± 1.8 68.0 ± 1.4 77.0 ± 3.9 62.7 ± 6.1 86.5 ± 0.4 72.1 ± 4.2 81.7 ± 5.0 62.2 ± 4.9 86.5 ± 0.3 72.0 ± 3.4 81.4 ± 5.0
4:6 68.8 ± 1.2 68.7 ± 3.1 68.5 ± 1.4 83.0 ± 2.0 70.4 ± 3.0 83.0 ± 3.2 75.8 ± 0.5 86.6 ± 1.3 68.1 ± 4.1 83.8 ± 2.6 74.5 ± 1.6 86.5 ± 2.5
5:5 46.3 ± 1.2 67.7 ± 2.5 55.0 ± 1.5 59.9 ± 2.8 39.7 ± 3.7 84.9 ± 3.7 53.2 ± 2.4 67.8 ± 5.1 38.0 ± 3.0 84.7 ± 2.2 51.5 ± 2.2 67.3 ± 4.7
6:4 27.9 ± 2.3 72.4 ± 2.7 39.9 ± 2.0 40.2 ± 0.3 17.0 ± 2.6 87.9 ± 1.2 28.1 ± 3.6 40.0 ± 0.9 18.1 ± 2.9 83.7 ± 0.4 29.1 ± 3.7 41.7 ± 0.7
7:3 13.3 ± 1.5 56.0 ± 5.2 21.2 ± 2.2 19.2 ± 2.1 7.3 ± 1.6 93.1 ± 3.3 13.1 ± 2.7 35.4 ± 2.2 5.8 ± 0.9 88.1 ± 2.5 10.8 ± 1.6 36.7 ± 1.0

Table S.2: Numeic values for results of Figure S.2 (top row)

I.2 Non-overlapping split

U:S CAUSAL LE ATTOP
UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED

2:8 64.3 ± 1.0 79.4 ± 1.5 70.8 ± 1.0 82.1 ± 0.7 35.4 ± 5.1 80.1 ± 3.7 48.7 ± 5.5 71.2 ± 2.6 53.4 ± 3.7 67.8 ± 3.2 59.1 ± 1.1 76.0 ± 5.4
3:7 48.7 ± 4.7 75.3 ± 4.6 58.9 ± 5.0 79.0 ± 5.5 22.9 ± 2.5 84.5 ± 2.3 35.7 ± 3.3 52.5 ± 6.8 37.4 ± 5.5 65.6 ± 2.4 46.3 ± 4.2 61.1 ± 10.9
4:6 43.5 ± 4.6 69.2 ± 4.2 53.2 ± 4.5 66.8 ± 5.3 27.5 ± 2.3 80.7 ± 2.9 40.7 ± 2.6 43.4 ± 4.2 21.7 ± 9.5 49.2 ± 5.3 26.8 ± 10.6 40.9 ± 10.1
5:5 15.7 ± 1.7 75.2 ± 7.3 25.8 ± 2.7 37.5 ± 4.9 9.1 ± 2.1 91.1 ± 0.5 16.3 ± 3.5 19.9 ± 3.6 6.4 ± 1.9 65.3 ± 7.5 9.9 ± 2.0 22.0 ± 4.2

U:S TMN
UNSEEN SEEN HARMONIC CLOSED

2:8 47.2 ± 2.7 82.1 ± 2.9 59.5 ± 1.6 81.2 ± 2.2
3:7 23.4 ± 4.2 84.2 ± 0.2 35.1 ± 5.4 64.4 ± 5.6
4:6 15.3 ± 4.4 85.5 ± 3.1 24.7 ± 6.3 54.4 ± 4.7
5:5 3.0 ± 1.1 86.8 ± 3.4 5.6 ± 2.0 32.7 ± 1.6

Table S.3: Numeric values for results of Figure S.1
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